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Figure 6.27: Spectral coherency measured in a turbulent boundary layer at Ry =
1400 (Saddoughi and Veeravalli 1994).
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6.6 Spectral View of the Energy Cascade

In Sections 6.2-6.5 we introduced several statistics used to quantify turbu-
lent motions on different scales, and we examined these statistics through
experimental data, the Kolmogorov hypotheses, and a simple model spec-
trum. We are now in a position to provide a fuller account of the energy
cascade than is given in Section 6.1. This Section therefore serves to sum-
marize and consolidate the preceding development.

Energy-Containing Motions. We again consider very-high-Reynolds-
number flow, so that there is a clear separation between the energy-containing
and dissipative scales of motion (i.e., L11/n ~ Ret > 1). The bulk of the
turbulent kinetic energy is contained in motions of lengthscale ¢, compara-
ble to the integral lengthscale Lyy (6L > £ > %Ln = lg;, say), and whose

characteristic velocity is of order k2. Since their size is comparable to the
flow dimensions L, these large-scale motions can be strongly influenced by
the geometry of the flow. Furthermore, their timescale L1/ k7 is large com-
pared to the mean flow timescale (see Table 5.2 on page 135), so that they
are significantly affected by the flow history. In other words, and in contrast



258 CHAPTER 6. THE SCALES OF TURBULENT MOTION

to the universal equilibrium range, the energy-containing motions do not
have a universal form brought about by a statistical equilibrium.

All of the anisotropy is confined to the energy-containing motions, and
consequently so also is all of the turbulence production. On the other hand,
the viscous dissipation is negligible. Instead, as the initial steps in the
cascade, energy is removed by inviscid processes and transferred to smaller
scales (¢ < £g;) at a rate Tz;, which scales as k%/Lu. This transfer process
depends on the non-universal energy-containing motions, and consequently
the non-dimensional ratio T,/ (k% /L11) is not universal.

Energy Spectrum Balance. For homogeneous turbulence (with imposed
mean velocity gradients) this picture is quantified by the balance equation
for the energy spectrum function E(k,t). This equation (derived in detail
in Hinze 1975 and Monin and Yaglom 1975) can be written

0 0 9
—FE(k,t) = Pg(k,t) — -—Tu(k,t) — 2vk“E(K, t). (6.284)
ot ok
The three terms on the right-hand side represent production, spectral trans-
fer and dissipation.

The production spectrum Py is given by the product of the mean ve-
locity gradients d(U;)/0x; and an anisotropic part of the spectrum tensor.
The contribution to the production from the wavenumber range (kq, kp) is
denoted by

Kp
P(na,nb) = /H P, dk, (6.285)

and to the extent that all of the anisotropy is contained in the energy-
containing range, we therefore have

P = P(O,OO) ~ P(O,KE[)? (6286)
and
,P(KFJ,OO)/’P <1 (6.287)

In the second term on the right-hand side of Eq. (6.284), T.(x) is the
spectral energy transfer rate: it is the net rate at which energy is transferred
from modes of lower wavenumber than x to those higher than x. This is
simply related to 7 (¢) the rate of transfer of energy from eddies larger
than ¢ to those smaller than £ by

T(0) = Ta(27 /). (6.288)

The rate of gain of energy in the wavenumber range (kq,kp) due to this
spectral transfer is
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Figure 6.28: For homogeneous turbulence at very high Reynolds number, sketches
of (a) the energy and dissipation spectra (b) the contributions to the balance equa-
tion for E(k,t) (Eq. 6.284), and (c) the spectral energy transfer rate.

Kp
[ G e = T~ Talo) (6:289)
Since 7, vanishes at zero and infinite wavenumber, this transfer term makes
no contribution to the balance of turbulent kinetic energy k.

An exact expression for 7,; can be obtained from the Navier-Stokes equa-
tions (see, e.g., Hinze 1975). There are two contributions: one resulting from
interactions of triads of wavenumber modes, similar to Eq. (6.162); the other
(examined in detail in Section 11.4) expressing a primarily kinematic effect
that mean velocity gradients have on the spectrum.

The final term in Eq. (6.284) is the dissipation spectrum D(k,t) =
2uk’E(k,t).

Figure 6.28 is a sketch of the quantities appearing in the balance equation
for E(k,t). In the energy-containing range, all the terms are significant
except for dissipation. With the approximations k(o) =~ k;€(0,xz,) = 0
and P(g ;) ~ P, when integrated over the energy-containing range (0, fz;),
Eq. (6.284) yields

dk
G RP-Ter (6.290)



260 CHAPTER 6. THE SCALES OF TURBULENT MOTION

where Tz, = Ti(kgr). In the inertial subrange, spectral transfer is the only
significant process so that (when integrated from kz; to kp;) Eq. (6.284)
yields

0~ Tor — Tors (6.291)

where Tp; = Tr(kpr). While in the dissipation range, spectral transfer bal-
ances dissipation so that (when integrated from xp; to infinity) Eq. (6.284)
yields

0= Tp —e. (6.292)

When added together, the last three equations give (without approximation)
the turbulent kinetic energy equation dk/dt =P —e.

The above equations again highlight the essential characteristics of the
energy cascade. The rate of energy transfer from the energy-containing
range Tz; depends, in a non-universal way, on several factors including the
mean velocity gradients and the details of the energy-containing range of
the spectrum. But this transfer rate then establishes an inertial subrange
of universal character with 7,(x) = Tz;; and finally the high wavenumber
part of the spectrum dissipates the energy at the same rate as it receives it.
Thus both Ty, and ¢ are determined by, and are equal to, Tz;. Quite often,
when “dissipation” is being considered—e.g., in characterizing the inertial
range spectrum as F(k) = Cesk5—it is conceptually superior to consider
Tzr in place of €.

Cascade Timescale. An analogy of questionable validity is that the
flow of energy in the inertial subrange is like the flow of an incompressible
fluid through a variable-area duct. The constant flow rate is 7., (in units
of energy per time) while the capacity of the cascade (analogous to duct
area) is F(k) (in units of energy per wavenumber). So the speed (in units of
wavenumber per time) at which the energy travels through the cascade is

i(K) = 71 | E(K) = k33 /C, (6.293)

the latter expression being obtained from the Kolmogorov spectrum and the
substitution 7,; = €. Notice that this speed increases rapidly with increasing
wavenumber.

It follows from the solution of the equation dx/dt = & that, accord-
ing to this analogy, the time %, .,) that it takes for energy to flow from
wavenumber r, to the higher wavenumber r; is

a1 -2 _2
Ukaks) = 5Ce™ 3 <f<.)a3 — Ky 3)

- 3¢ ([,.;QL]*% - [,-;,,L]*%). (6.294)
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With the relations i, = 27 /0y, g = $L11 and Ly1/L ~ 0.4, this formula
yields
twpro0) & 157 (6.295)

giving the estimate that the lifetime of the energy once it enters the inertial
subrange is just a tenth of its total lifetime 7 = k/e.

Spectral Energy Transfer Models. In the universal equilibrium range
(k > Kkgs), the balance in the spectral energy equation (Eq. 6.284) is between
the energy transfer and the dissipation, see Fig. 6.28(b). Hence, (at any time
t) Eq. (6.284) reduces to

0= —37;(5) — 2wk E(k). (6.296)
drk

In the period from 1940 to 1970 many models were proposed for the spectral
energy transfer rate 7y, which allow the form of the spectrum E(x) to be
deduced from Eq. (6.296). The proposals of Obukhov (1941), Heisenberg
(1948) and many others are reviewed by Panchev (1971). Appropriate to the
physics of the cascade, most of these models are non-local in the sense that
Tw(r) is postulated to depend on E(x'), for s’ # k. However, to illustrate
the approach, we consider the simple local model due to Pao (1965) . Similar
to Eq. (6.293), the speed of energy transfer () is defined by

k(k) = Te(k)/E(K). (6.297)

The single (though strong) assumption in Pao’s model is that & depends
solely on € and k. Dimensional analysis then determines

To(r) = E(k)is(r) = E(k)a 'e3x3, (6.298)

where « is a constant. With this expression for 7, Eq. (6.296) can be
integrated (see Exercise 6.36) to yield the Pao spectrum

2

E(k) = Ceik s exp (—%C[mn]%> , (6.299)

cf. Eq. (6.254). This is compared to experimental data in Fig. 6.15.

Exercise 6.36 Substitute Eq. (6.298) into Eq. (6.296) to obtain

% In [E(K)Kg] = —2ave K3, (6.300)
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and then integrate to obtain
E(k) = Bn_% exp (—%aus_%n%) ,

= ,8/(% exp (—

MY

a[m]%) , (6.301)

where  is a (dimensional) constant of integration. Argue that, for
consistency with the Kolmogorov spectrum (for small k7)), /3 is required

to be 8 = Ce3. Show that the dissipation given by Eq. (6.301) is
© 1
/ 2wkE(k) dk = €3/ a, (6.302)
0

and hence that « is identical to the Kolmogorov constant C. Confirm
that, with 8 = Ce? and a = C, Eq. (6.301) yields the Pao spectrum,
Eq. (6.299).

6.7 Limitations, Shortcomings and Refinements

In considerations of turbulent motions of different scales, the notions of the
energy cascade, vortex stretching, and the Kolmogorov hypotheses provide
an invaluable conceptual framework. However, both conceptually and em-
pirically, there are some shortcomings. Indeed since around 1960, a major
line of research (theoretical, experimental and computational) has been to
examine these shortcomings and to attempt to improve on the Kolmogorov
hypotheses. While it is appropriate to provide some discussion of these is-
sues here, it should be appreciated that they have minor impact on the study
and modelling of turbulent flows. This is simply because the small scales
(¢ < £g;) contain little energy (and less anisotropy) and so have little direct
effect on the flow.

6.7.1 Reynolds Number

A limitation of the Kolmogorov hypotheses is that they apply only to high-
Reynolds-number flows, and that a criterion for “sufficiently high Reynolds
number” is not provided. Many laboratory and practical flows have reason-
ably high Reynolds number (e.g., Re =~ 10,000,R, = 150), and yet even
the motions on the dissipative scales are found to be anisotropic (see, e.g.,
George and Hussein 1991).



